Search results for "Effective molarity"

showing 2 items of 2 documents

Chelate Cooperativity and Spacer Length Effects on the Assembly Thermodynamics and Kinetics of Divalent Pseudorotaxanes

2011

Homo- and heterodivalent crown-ammonium pseudorotaxanes with different spacers connecting the two axle ammonium binding sites have been synthesized and characterized by NMR spectroscopy and ESI mass spectrometry. The homodivalent pseudorotaxanes are investigated with respect to the thermodynamics of divalent binding and to chelate cooperativity. The shortest spacer exhibits a chelate cooperativity much stronger than that of the longer spacers. On the basis of crystal structure, this can be explained by a noninnocent spacer, which contributes to the binding strength in addition to the two binding sites. Already very subtle changes in the spacer length, i.e., the introduction of an additional…

Models Molecularchemistry.chemical_classificationSpectrometry Mass Electrospray IonizationMagnetic Resonance SpectroscopyRotaxanesCooperative bindingThermodynamicsCooperativityGeneral ChemistryCrystal structureNuclear magnetic resonance spectroscopyBiochemistryCatalysisDivalentQuaternary Ammonium CompoundsKineticschemistry.chemical_compoundColloid and Surface ChemistrychemistryIntramolecular forceEffective molarityThermodynamicsMethyleneta116Chelating AgentsJournal of the American Chemical Society
researchProduct

Metal-atom impact on the self-assembly of cup-and-ball metalloporphyrin–fullerene conjugates

2014

International audience; A fullerene ammonium derivative has been combined with different metalloporphyrin–crown ether receptors to generate very stable supramolecules. The combination of fullerene–porphyrin and ammonium–crown ether interactions leads to a strong chelate effect as evidenced by a high effective molarity (3.16 M). The different parameters influencing the stability of the supramolecular ensembles, in particular the nature of the metal in the porphyrin moiety, have been rationalized with the help of theoretical calculations thus providing new insights into fullerene–porphyrin interactions.

FullereneMolecular model010405 organic chemistrySupramolecular chemistryQuímica orgánicaEtherGeneral ChemistryGeneral Medicine010402 general chemistryPorphyrin01 natural sciencesCatalysis0104 chemical sciencesMetalchemistry.chemical_compoundchemistryComputational chemistryvisual_artEffective molarityvisual_art.visual_art_mediumMoietyOrganic chemistry[CHIM.COOR]Chemical Sciences/Coordination chemistry
researchProduct